public class ConjunctiveRule
extends weka.classifiers.AbstractClassifier
implements weka.core.OptionHandler, weka.core.WeightedInstancesHandler
-N <number of folds> Set number of folds for REP One fold is used as pruning set. (default 3)
-R Set if NOT uses randomization (default:use randomization)
-E Set whether consider the exclusive expressions for nominal attributes (default false)
-M <min. weights> Set the minimal weights of instances within a split. (default 2.0)
-P <number of antecedents> Set number of antecedents for pre-pruning if -1, then REP is used (default -1)
-S <seed> Set the seed of randomization (default 1)
Constructor and Description |
---|
ConjunctiveRule() |
Modifier and Type | Method and Description |
---|---|
void |
buildClassifier(weka.core.Instances instances)
Builds a single rule learner with REP dealing with nominal classes or
numeric classes.
|
double[] |
distributionForInstance(weka.core.Instance instance)
Computes class distribution for the given instance.
|
java.lang.String |
exclusiveTipText()
Returns the tip text for this property
|
java.lang.String |
foldsTipText()
Returns the tip text for this property
|
weka.core.Capabilities |
getCapabilities()
Returns default capabilities of the classifier.
|
boolean |
getExclusive()
Returns whether exclusive expressions for nominal attributes splits are
considered
|
int |
getFolds()
returns the current number of folds
|
double |
getMinNo()
Gets the minimum total weight of the instances in a rule
|
int |
getNumAntds()
Gets the number of antecedants
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
long |
getSeed()
returns the current seed value for randomizing the data
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
boolean |
hasAntds()
Whether this rule has antecedents, i.e.
|
boolean |
isCover(weka.core.Instance datum)
Whether the instance covered by this rule
|
java.util.Enumeration<weka.core.Option> |
listOptions()
Returns an enumeration describing the available options Valid options are:
|
static void |
main(java.lang.String[] args)
Main method.
|
java.lang.String |
minNoTipText()
Returns the tip text for this property
|
java.lang.String |
numAntdsTipText()
Returns the tip text for this property
|
java.lang.String |
seedTipText()
Returns the tip text for this property
|
void |
setExclusive(boolean e)
Sets whether exclusive expressions for nominal attributes splits are
considered
|
void |
setFolds(int folds)
the number of folds to use
|
void |
setMinNo(double m)
Sets the minimum total weight of the instances in a rule
|
void |
setNumAntds(int n)
Sets the number of antecedants
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
void |
setSeed(long s)
sets the seed for randomizing the data
|
java.lang.String |
toString()
Prints this rule
|
java.lang.String |
toString(java.lang.String att,
java.lang.String cl)
Prints this rule with the specified class label
|
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
public java.lang.String globalInfo()
public java.util.Enumeration<weka.core.Option> listOptions()
-N number
Set number of folds for REP. One fold is used as the pruning set. (Default:
3)
-R
Set if NOT randomize the data before split to growing and pruning data. If
NOT set, the seed of randomization is specified by the -S option. (Default:
randomize)
-S
Seed of randomization. (Default: 1)
-E
Set whether consider the exclusive expressions for nominal attribute split.
(Default: false)
-M number
Set the minimal weights of instances within a split. (Default: 2)
-P number
Set the number of antecedents allowed in the rule if pre-pruning is used.
If this value is other than -1, then pre-pruning will be used, otherwise
the rule uses REP. (Default: -1)
listOptions
in interface weka.core.OptionHandler
listOptions
in class weka.classifiers.AbstractClassifier
public void setOptions(java.lang.String[] options) throws java.lang.Exception
-N <number of folds> Set number of folds for REP One fold is used as pruning set. (default 3)
-R Set if NOT uses randomization (default:use randomization)
-E Set whether consider the exclusive expressions for nominal attributes (default false)
-M <min. weights> Set the minimal weights of instances within a split. (default 2.0)
-P <number of antecedents> Set number of antecedents for pre-pruning if -1, then REP is used (default -1)
-S <seed> Set the seed of randomization (default 1)
setOptions
in interface weka.core.OptionHandler
setOptions
in class weka.classifiers.AbstractClassifier
options
- the list of options as an array of stringsjava.lang.Exception
- if an option is not supportedpublic java.lang.String[] getOptions()
getOptions
in interface weka.core.OptionHandler
getOptions
in class weka.classifiers.AbstractClassifier
public java.lang.String foldsTipText()
public void setFolds(int folds)
folds
- the number of folds to usepublic int getFolds()
public java.lang.String seedTipText()
public void setSeed(long s)
s
- the seed valuepublic long getSeed()
public java.lang.String exclusiveTipText()
public boolean getExclusive()
public void setExclusive(boolean e)
e
- whether to consider exclusive expressions for nominal attribute
splitspublic java.lang.String minNoTipText()
public void setMinNo(double m)
m
- the minimum total weight of the instances in a rulepublic double getMinNo()
public java.lang.String numAntdsTipText()
public void setNumAntds(int n)
n
- the number of antecedantspublic int getNumAntds()
public weka.core.Capabilities getCapabilities()
getCapabilities
in interface weka.classifiers.Classifier
getCapabilities
in interface weka.core.CapabilitiesHandler
getCapabilities
in class weka.classifiers.AbstractClassifier
public void buildClassifier(weka.core.Instances instances) throws java.lang.Exception
buildClassifier
in interface weka.classifiers.Classifier
instances
- the training datajava.lang.Exception
- if classifier can't be built successfullypublic double[] distributionForInstance(weka.core.Instance instance) throws java.lang.Exception
distributionForInstance
in interface weka.classifiers.Classifier
distributionForInstance
in class weka.classifiers.AbstractClassifier
instance
- the instance for which distribution is to be computedjava.lang.Exception
- if given instance is nullpublic boolean isCover(weka.core.Instance datum)
datum
- the instance in questionpublic boolean hasAntds()
public java.lang.String toString(java.lang.String att, java.lang.String cl)
att
- the string standing for attribute in the consequent of this rulecl
- the string standing for value in the consequent of this rulepublic java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String getRevision()
getRevision
in interface weka.core.RevisionHandler
getRevision
in class weka.classifiers.AbstractClassifier
public static void main(java.lang.String[] args)
args
- the options for the classifier