public class CaRuleGeneration
extends weka.associations.RuleGeneration
implements java.io.Serializable
The implementation follows the paper expect for adding a rule to the output of the n<\i> best rules. A rule is added if: the expected predictive accuracy of this rule is among the n<\i> best and it is not subsumed by a rule with at least the same expected predictive accuracy (out of an unpublished manuscript from T. Scheffer).
| Constructor and Description | 
|---|
| CaRuleGeneration(weka.associations.ItemSet itemSet)Constructor | 
| Modifier and Type | Method and Description | 
|---|---|
| static boolean | aSubsumesB(weka.associations.RuleItem a,
          weka.associations.RuleItem b)Methods that decides whether or not rule a subsumes rule b. | 
| java.util.TreeSet | generateRules(int numRules,
             double[] midPoints,
             java.util.Hashtable priors,
             double expectation,
             weka.core.Instances instances,
             java.util.TreeSet best,
             int genTime)Generates all rules for an item set. | 
| static weka.core.FastVector | singleConsequence(weka.core.Instances instances)generates a consequence of length 1 for a class association rule. | 
| static weka.core.FastVector | singletons(weka.core.Instances instances)Converts the header info of the given set of instances into a set 
 of item sets (singletons). | 
public CaRuleGeneration(weka.associations.ItemSet itemSet)
itemSet - the item set that forms the premise of the rulepublic java.util.TreeSet generateRules(int numRules,
                                       double[] midPoints,
                                       java.util.Hashtable priors,
                                       double expectation,
                                       weka.core.Instances instances,
                                       java.util.TreeSet best,
                                       int genTime)
generateRules in class weka.associations.RuleGenerationnumRules - the number of association rules the use wants to mine.
 This number equals the size n<\i> of the list of the
 best rules.midPoints - the mid points of the intervalspriors - Hashtable that contains the prior probabilitiesexpectation - the minimum value of the expected predictive accuracy
 that is needed to get into the list of the best rulesinstances - the instances for which association rules are generatedbest - the list of the n<\i> best rules.
 The list is implemented as a TreeSetgenTime - the maximum time of generationpublic static boolean aSubsumesB(weka.associations.RuleItem a,
                                 weka.associations.RuleItem b)
a - an association rule stored as a RuleItemb - an association rule stored as a RuleItempublic static weka.core.FastVector singletons(weka.core.Instances instances)
                                       throws java.lang.Exception
instances - the set of instances whose header info is to be usedjava.lang.Exception - if singletons can't be generated successfullypublic static weka.core.FastVector singleConsequence(weka.core.Instances instances)
instances - the instances under consideration