- GeneticSearch - Class in weka.attributeSelection
-
GeneticSearch:
Performs a search using the simple genetic algorithm described in Goldberg
(1989).
For more information see:
David E.
- GeneticSearch() - Constructor for class weka.attributeSelection.GeneticSearch
-
Constructor.
- getAttributeEvaluator() - Method in class weka.attributeSelection.RankSearch
-
Get the attribute evaluator used to generate the ranking.
- getCrossoverProb() - Method in class weka.attributeSelection.GeneticSearch
-
get the probability of crossover
- getDebuggingOutput() - Method in class weka.attributeSelection.RankSearch
-
Get whether to output debugging info to the console
- getExcludeNonImprovingAttributes() - Method in class weka.attributeSelection.RankSearch
-
Get whether or not to add prior non-improving attributes when considering
more attributes from the ranked list
- getImprovementThreshold() - Method in class weka.attributeSelection.RankSearch
-
Get merit improvement threshold
- getMaxGenerations() - Method in class weka.attributeSelection.GeneticSearch
-
get the number of generations
- getMutationProb() - Method in class weka.attributeSelection.GeneticSearch
-
get the probability of mutation
- getNonImprovingAdditions() - Method in class weka.attributeSelection.RankSearch
-
Get the number of consecutive non-improving additions to tolerate before
terminating the search
- getOptions() - Method in class weka.attributeSelection.ExhaustiveSearch
-
Gets the current settings of RandomSearch.
- getOptions() - Method in class weka.attributeSelection.GeneticSearch
-
Gets the current settings of ReliefFAttributeEval.
- getOptions() - Method in class weka.attributeSelection.RandomSearch
-
Gets the current settings of RandomSearch.
- getOptions() - Method in class weka.attributeSelection.RankSearch
-
Gets the current settings of WrapperSubsetEval.
- getPopulationSize() - Method in class weka.attributeSelection.GeneticSearch
-
get the size of the population
- getReportFrequency() - Method in class weka.attributeSelection.GeneticSearch
-
get how often repports are generated
- getRevision() - Method in class weka.attributeSelection.ExhaustiveSearch
-
Returns the revision string.
- getRevision() - Method in class weka.attributeSelection.GeneticSearch
-
Returns the revision string.
- getRevision() - Method in class weka.attributeSelection.RandomSearch
-
Returns the revision string.
- getRevision() - Method in class weka.attributeSelection.RankSearch
-
Returns the revision string.
- getSearchPercent() - Method in class weka.attributeSelection.RandomSearch
-
get the percentage of the search space to consider
- getSeed() - Method in class weka.attributeSelection.GeneticSearch
-
get the value of the random number generator's seed
- getSeed() - Method in class weka.attributeSelection.RandomSearch
-
- getStartPoint() - Method in class weka.attributeSelection.RankSearch
-
Get the point at which to start evaluating the ranking
- getStartSet() - Method in class weka.attributeSelection.GeneticSearch
-
Returns a list of attributes (and or attribute ranges) as a String
- getStartSet() - Method in class weka.attributeSelection.RandomSearch
-
Returns a list of attributes (and or attribute ranges) as a String
- getStepSize() - Method in class weka.attributeSelection.RankSearch
-
Get the number of attributes to add from the rankining in each iteration
- getTechnicalInformation() - Method in class weka.attributeSelection.GeneticSearch
-
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
- getTechnicalInformation() - Method in class weka.attributeSelection.RandomSearch
-
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
- getTechnicalInformation() - Method in class weka.attributeSelection.RankSearch
-
Returns an instance of a TechnicalInformation object, containing detailed
information about the technical background of this class, e.g., paper
reference or book this class is based on.
- getVerbose() - Method in class weka.attributeSelection.ExhaustiveSearch
-
get whether or not output is verbose
- getVerbose() - Method in class weka.attributeSelection.RandomSearch
-
get whether or not output is verbose
- globalInfo() - Method in class weka.attributeSelection.ExhaustiveSearch
-
Returns a string describing this search method
- globalInfo() - Method in class weka.attributeSelection.GeneticSearch
-
Returns a string describing this search method
- globalInfo() - Method in class weka.attributeSelection.RandomSearch
-
Returns a string describing this search method
- globalInfo() - Method in class weka.attributeSelection.RankSearch
-
Returns a string describing this search method
- search(ASEvaluation, Instances) - Method in class weka.attributeSelection.ExhaustiveSearch
-
Searches the attribute subset space using an exhaustive search.
- search(ASEvaluation, Instances) - Method in class weka.attributeSelection.GeneticSearch
-
Searches the attribute subset space using a genetic algorithm.
- search(ASEvaluation, Instances) - Method in class weka.attributeSelection.RandomSearch
-
Searches the attribute subset space randomly.
- search(ASEvaluation, Instances) - Method in class weka.attributeSelection.RankSearch
-
Ranks attributes using the specified attribute evaluator and then searches
the ranking using the supplied subset evaluator.
- searchPercentTipText() - Method in class weka.attributeSelection.RandomSearch
-
Returns the tip text for this property
- seedTipText() - Method in class weka.attributeSelection.GeneticSearch
-
Returns the tip text for this property
- seedTipText() - Method in class weka.attributeSelection.RandomSearch
-
Returns the tip text for this property
- setAttributeEvaluator(ASEvaluation) - Method in class weka.attributeSelection.RankSearch
-
Set the attribute evaluator to use for generating the ranking.
- setCrossoverProb(double) - Method in class weka.attributeSelection.GeneticSearch
-
set the probability of crossover
- setDebuggingOutput(boolean) - Method in class weka.attributeSelection.RankSearch
-
Set whether to output debugging info to the console
- setExcludeNonImprovingAttributes(boolean) - Method in class weka.attributeSelection.RankSearch
-
Set whether or not to add prior non-improving attributes when considering
more attributes from the ranked list
- setImprovementThreshold(double) - Method in class weka.attributeSelection.RankSearch
-
Set merit improvement threshold
- setMaxGenerations(int) - Method in class weka.attributeSelection.GeneticSearch
-
set the number of generations to evaluate
- setMutationProb(double) - Method in class weka.attributeSelection.GeneticSearch
-
set the probability of mutation
- setNonImprovingAdditions(int) - Method in class weka.attributeSelection.RankSearch
-
Set the number of consecutive non-improving additions to tolerate before
terminating the search
- setOptions(String[]) - Method in class weka.attributeSelection.ExhaustiveSearch
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.attributeSelection.GeneticSearch
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.attributeSelection.RandomSearch
-
Parses a given list of options.
- setOptions(String[]) - Method in class weka.attributeSelection.RankSearch
-
Parses a given list of options.
- setPopulationSize(int) - Method in class weka.attributeSelection.GeneticSearch
-
set the population size
- setReportFrequency(int) - Method in class weka.attributeSelection.GeneticSearch
-
set how often reports are generated
- setSearchPercent(double) - Method in class weka.attributeSelection.RandomSearch
-
set the percentage of the search space to consider
- setSeed(int) - Method in class weka.attributeSelection.GeneticSearch
-
set the seed for random number generation
- setSeed(int) - Method in class weka.attributeSelection.RandomSearch
-
- setStartPoint(int) - Method in class weka.attributeSelection.RankSearch
-
Set the point at which to start evaluating the ranking
- setStartSet(String) - Method in class weka.attributeSelection.GeneticSearch
-
Sets a starting set of attributes for the search.
- setStartSet(String) - Method in class weka.attributeSelection.RandomSearch
-
Sets a starting set of attributes for the search.
- setStepSize(int) - Method in class weka.attributeSelection.RankSearch
-
Set the number of attributes to add from the rankining in each iteration
- setVerbose(boolean) - Method in class weka.attributeSelection.ExhaustiveSearch
-
set whether or not to output new best subsets as the search proceeds
- setVerbose(boolean) - Method in class weka.attributeSelection.RandomSearch
-
set whether or not to output new best subsets as the search proceeds
- startPointTipText() - Method in class weka.attributeSelection.RankSearch
-
Returns the tip text for this property
- startSetTipText() - Method in class weka.attributeSelection.GeneticSearch
-
Returns the tip text for this property
- startSetTipText() - Method in class weka.attributeSelection.RandomSearch
-
Returns the tip text for this property
- stepSizeTipText() - Method in class weka.attributeSelection.RankSearch
-
Returns the tip text for this property