-
m_Instances
weka.core.Instances m_Instances
training instances.
-
m_Model
weka.core.Instances m_Model
model information, should increase readability.
-
m_ReplaceMissingFilter
weka.filters.unsupervised.attribute.ReplaceMissingValues m_ReplaceMissingFilter
replace missing values in training instances.
-
m_BinValue
double m_BinValue
Distance value between true and false of binary attributes and "same" and
"different" of nominal attributes (default = 1.0).
-
m_Bic
double m_Bic
BIC-Score of the current model.
-
m_Mle
double[] m_Mle
Distortion.
-
m_MaxIterations
int m_MaxIterations
maximum overall iterations.
-
m_MaxKMeans
int m_MaxKMeans
maximum iterations to perform Kmeans part if negative, iterations are not
checked.
-
m_MaxKMeansForChildren
int m_MaxKMeansForChildren
see above, but for kMeans of splitted clusters.
-
m_NumClusters
int m_NumClusters
The actual number of clusters.
-
m_MinNumClusters
int m_MinNumClusters
min number of clusters to generate.
-
m_MaxNumClusters
int m_MaxNumClusters
max number of clusters to generate.
-
m_DistanceF
weka.core.DistanceFunction m_DistanceF
the distance function used.
-
m_ClusterCenters
weka.core.Instances m_ClusterCenters
cluster centers.
-
m_InputCenterFile
java.io.File m_InputCenterFile
file name of the output file for the cluster centers.
-
m_DebugVectorsInput
java.io.Reader m_DebugVectorsInput
input file for the random vectors --> USED FOR DEBUGGING.
-
m_DebugVectorsIndex
int m_DebugVectorsIndex
the index for the current debug vector.
-
m_DebugVectors
weka.core.Instances m_DebugVectors
all the debug vectors.
-
m_DebugVectorsFile
java.io.File m_DebugVectorsFile
file name of the input file for the random vectors.
-
m_OutputCenterFile
java.io.File m_OutputCenterFile
file name of the output file for the cluster centers.
-
m_ClusterAssignments
int[] m_ClusterAssignments
temporary variable holding cluster assignments while iterating.
-
m_CutOffFactor
double m_CutOffFactor
cutoff factor - percentage of splits done in Improve-Structure part only
relevant, if all children lost.
-
m_KDTree
weka.core.neighboursearch.KDTree m_KDTree
KDTrees class if KDTrees are used.
-
m_UseKDTree
boolean m_UseKDTree
whether to use the KDTree (the KDTree is only initialized to be
configurable from the GUI).
-
m_IterationCount
int m_IterationCount
counts iterations done in main loop.
-
m_KMeansStopped
int m_KMeansStopped
counter to say how often kMeans was stopped by loop counter.
-
m_NumSplits
int m_NumSplits
Number of splits prepared.
-
m_NumSplitsDone
int m_NumSplitsDone
Number of splits accepted (including cutoff factor decisions).
-
m_NumSplitsStillDone
int m_NumSplitsStillDone
Number of splits accepted just because of cutoff factor.
-
m_DebugLevel
int m_DebugLevel
level of debug output, 0 is no output.
-
m_CurrDebugFlag
boolean m_CurrDebugFlag
Flag: I'm debugging.