public class WeightedInstancesHandlerWrapper extends RandomizableSingleClassifierEnhancer implements WeightedInstancesHandler
-force-resample-with-weights Forces resampling of weights, regardless of whether base classifier handles instance weights
-S <num> Random number seed. (default 1)
-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-num-decimal-places The number of decimal places for the output of numbers in the model (default 2).
Options specific to classifier weka.classifiers.rules.ZeroR:
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-num-decimal-places The number of decimal places for the output of numbers in the model (default 2).
| Modifier and Type | Field and Description |
|---|---|
static java.lang.String |
FORCE_RESAMPLE_WITH_WEIGHTS
command-line option for resampling with weights.
|
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT| Constructor and Description |
|---|
WeightedInstancesHandlerWrapper() |
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
builds the classifier.
|
double |
classifyInstance(Instance instance)
Classifies the given test instance.
|
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test
instance.
|
java.lang.String |
forceResampleWithWeightsTipText()
Returns the tip text for this property
|
boolean |
getForceResampleWithWeights()
Gets the size of each subSpace, as a percentage of the training set size.
|
java.lang.String[] |
getOptions()
Gets the current settings of the Classifier.
|
java.lang.String |
getRevision()
Returns the revision string.
|
java.lang.String |
globalInfo()
Returns a string describing classifier
|
java.util.Enumeration<Option> |
listOptions()
Returns an enumeration describing the available options.
|
static void |
main(java.lang.String[] args)
Main method for testing this class.
|
void |
setForceResampleWithWeights(boolean value)
Sets the size of each subSpace, as a percentage of the training set size.
|
void |
setOptions(java.lang.String[] options)
Parses a given list of options.
|
java.lang.String |
toString()
Returns a string description of the model.
|
getSeed, seedTipText, setSeedclassifierTipText, getCapabilities, getClassifier, postExecution, preExecution, setClassifierbatchSizeTipText, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacesequals, getClass, hashCode, notify, notifyAll, wait, wait, waitmakeCopypublic static final java.lang.String FORCE_RESAMPLE_WITH_WEIGHTS
public java.lang.String globalInfo()
public java.util.Enumeration<Option> listOptions()
listOptions in interface OptionHandlerlistOptions in class RandomizableSingleClassifierEnhancerpublic void setOptions(java.lang.String[] options)
throws java.lang.Exception
setOptions in interface OptionHandlersetOptions in class RandomizableSingleClassifierEnhanceroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class RandomizableSingleClassifierEnhancerpublic boolean getForceResampleWithWeights()
public void setForceResampleWithWeights(boolean value)
value - the subSpace size, as a percentage.public java.lang.String forceResampleWithWeightsTipText()
public void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in interface Classifierdata - the training data to be used for generating the
classifier.java.lang.Exception - if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance in interface ClassifierdistributionForInstance in class AbstractClassifierinstance - the instance to be classifiedjava.lang.Exception - if distribution can't be computed successfullypublic double classifyInstance(Instance instance) throws java.lang.Exception
classifyInstance in interface ClassifierclassifyInstance in class AbstractClassifierinstance - the instance to be classifiedjava.lang.Exception - if an error occurred during the predictionpublic java.lang.String toString()
toString in class java.lang.Objectpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifierpublic static void main(java.lang.String[] args)
args - the options