public class RandomizableFilteredClassifier extends FilteredClassifier
-F <filter specification> Full class name of filter to use, followed by filter options. default: "weka.filters.unsupervised.attribute.RandomProjection -N 10 -D Sparse1"
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.lazy.IBk)
-S num Set the random number seed (default 1).
Options specific to classifier weka.classifiers.lazy.IBk:
-I Weight neighbours by the inverse of their distance (use when k > 1)
-F Weight neighbours by 1 - their distance (use when k > 1)
-K <number of neighbors> Number of nearest neighbours (k) used in classification. (Default = 1)
-E Minimise mean squared error rather than mean absolute error when using -X option with numeric prediction.
-W <window size> Maximum number of training instances maintained. Training instances are dropped FIFO. (Default = no window)
-X Select the number of nearest neighbours between 1 and the k value specified using hold-one-out evaluation on the training data (use when k > 1)
-A The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULTBayesNet, Newick, NOT_DRAWABLE, TREE| Constructor and Description |
|---|
RandomizableFilteredClassifier()
Default constructor.
|
| Modifier and Type | Method and Description |
|---|---|
void |
buildClassifier(Instances data)
Build the classifier on the filtered data.
|
java.lang.String |
getRevision()
Returns the revision string.
|
java.lang.String |
globalInfo()
Returns a string describing this classifier
|
void |
initializeClassifier(Instances data)
Initializes an iterative classifier.
|
static void |
main(java.lang.String[] argv)
Main method for testing this class.
|
java.lang.String |
toString()
Output a representation of this classifier
|
batchSizeTipText, distributionForInstance, distributionsForInstances, done, doNotCheckForModifiedClassAttributeTipText, filterTipText, generatePartition, getBatchSize, getCapabilities, getDoNotCheckForModifiedClassAttribute, getFilter, getMembershipValues, getOptions, getResume, graph, graphType, implementsMoreEfficientBatchPrediction, listOptions, next, numElements, resumeTipText, setBatchSize, setDoNotCheckForModifiedClassAttribute, setFilter, setOptions, setResumegetSeed, seedTipText, setSeedclassifierTipText, getClassifier, postExecution, preExecution, setClassifierclassifyInstance, debugTipText, doNotCheckCapabilitiesTipText, forName, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacesequals, getClass, hashCode, notify, notifyAll, wait, wait, waitclassifyInstancemakeCopypublic RandomizableFilteredClassifier()
public java.lang.String globalInfo()
globalInfo in class FilteredClassifierpublic void initializeClassifier(Instances data) throws java.lang.Exception
initializeClassifier in interface IterativeClassifierinitializeClassifier in class FilteredClassifierdata - the instances to be used in inductionjava.lang.Exception - if the model cannot be initializedpublic void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in interface ClassifierbuildClassifier in class FilteredClassifierdata - the training datajava.lang.Exception - if the classifier could not be built successfullypublic java.lang.String toString()
toString in class FilteredClassifierpublic java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class FilteredClassifierpublic static void main(java.lang.String[] argv)
argv - should contain the following arguments:
-t training file [-T test file] [-c class index]