public class LinearRegression extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler
-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
-minimal Conserve memory, don't keep dataset header and means/stdevs. Model cannot be printed out if this option is enabled. (default: keep data)
-additional-stats Output additional statistics.
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
| Modifier and Type | Field and Description | 
|---|---|
| static int | SELECTION_GREEDYAttribute selection method: Greedy method | 
| static int | SELECTION_M5Attribute selection method: M5 method | 
| static int | SELECTION_NONEAttribute selection method: No attribute selection | 
| static Tag[] | TAGS_SELECTIONAttribute selection methods | 
BATCH_SIZE_DEFAULT, NUM_DECIMAL_PLACES_DEFAULT| Constructor and Description | 
|---|
| LinearRegression() | 
| Modifier and Type | Method and Description | 
|---|---|
| java.lang.String | attributeSelectionMethodTipText()Returns the tip text for this property | 
| void | buildClassifier(Instances data)Builds a regression model for the given data. | 
| double | classifyInstance(Instance instance)Classifies the given instance using the linear regression function. | 
| double[] | coefficients()Returns the coefficients for this linear model. | 
| java.lang.String | eliminateColinearAttributesTipText()Returns the tip text for this property | 
| SelectedTag | getAttributeSelectionMethod()Gets the method used to select attributes for use in the linear regression. | 
| Capabilities | getCapabilities()Returns default capabilities of the classifier. | 
| boolean | getEliminateColinearAttributes()Get the value of EliminateColinearAttributes. | 
| boolean | getMinimal()Returns whether to be more memory conservative or being able to output the
 model as string. | 
| java.lang.String[] | getOptions()Gets the current settings of the classifier. | 
| boolean | getOutputAdditionalStats()Get whether to output additional statistics (such as std. | 
| java.lang.String | getRevision()Returns the revision string. | 
| double | getRidge()Get the value of Ridge. | 
| boolean | getUseQRDecomposition()Get whether to use QR decomposition. | 
| java.lang.String | globalInfo()Returns a string describing this classifier | 
| java.util.Enumeration<Option> | listOptions()Returns an enumeration describing the available options. | 
| static void | main(java.lang.String[] argv)Generates a linear regression function predictor. | 
| java.lang.String | minimalTipText()Returns the tip text for this property. | 
| int | numParameters()Get the number of coefficients used in the model | 
| java.lang.String | outputAdditionalStatsTipText()Returns the tip text for this property. | 
| java.lang.String | ridgeTipText()Returns the tip text for this property | 
| void | setAttributeSelectionMethod(SelectedTag method)Sets the method used to select attributes for use in the linear regression. | 
| void | setEliminateColinearAttributes(boolean newEliminateColinearAttributes)Set the value of EliminateColinearAttributes. | 
| void | setMinimal(boolean value)Sets whether to be more memory conservative or being able to output the
 model as string. | 
| void | setOptions(java.lang.String[] options)Parses a given list of options. | 
| void | setOutputAdditionalStats(boolean additional)Set whether to output additional statistics (such as std. | 
| void | setRidge(double newRidge)Set the value of Ridge. | 
| void | setUseQRDecomposition(boolean useQR)Set whether to use QR decomposition. | 
| java.lang.String | toString()Outputs the linear regression model as a string. | 
| void | turnChecksOff()Turns off checks for missing values, etc. | 
| void | turnChecksOn()Turns on checks for missing values, etc. | 
| java.lang.String | useQRDecompositionTipText()Returns the tip text for this property. | 
batchSizeTipText, debugTipText, distributionForInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlacesequals, getClass, hashCode, notify, notifyAll, wait, wait, waitmakeCopypublic static final int SELECTION_M5
public static final int SELECTION_NONE
public static final int SELECTION_GREEDY
public static final Tag[] TAGS_SELECTION
public static void main(java.lang.String[] argv)
argv - the optionspublic java.lang.String globalInfo()
public Capabilities getCapabilities()
getCapabilities in interface ClassifiergetCapabilities in interface CapabilitiesHandlergetCapabilities in class AbstractClassifierCapabilitiespublic void buildClassifier(Instances data) throws java.lang.Exception
buildClassifier in interface Classifierdata - the training data to be used for generating the linear
          regression functionjava.lang.Exception - if the classifier could not be built successfullypublic double classifyInstance(Instance instance) throws java.lang.Exception
classifyInstance in interface ClassifierclassifyInstance in class AbstractClassifierinstance - the test instancejava.lang.Exception - if classification can't be done successfullypublic java.lang.String toString()
toString in class java.lang.Objectpublic java.util.Enumeration<Option> listOptions()
listOptions in interface OptionHandlerlistOptions in class AbstractClassifierpublic double[] coefficients()
public java.lang.String[] getOptions()
getOptions in interface OptionHandlergetOptions in class AbstractClassifierpublic void setOptions(java.lang.String[] options)
                throws java.lang.Exception
-S <number of selection method> Set the attribute selection method to use. 1 = None, 2 = Greedy. (default 0 = M5' method)
-C Do not try to eliminate colinear attributes.
-R <double> Set ridge parameter (default 1.0e-8).
-minimal Conserve memory, don't keep dataset header and means/stdevs. Model cannot be printed out if this option is enabled. (default: keep data)
-additional-stats Output additional statistics.
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-use-qr If set, QR decomposition will be used to find coefficients.
setOptions in interface OptionHandlersetOptions in class AbstractClassifieroptions - the list of options as an array of stringsjava.lang.Exception - if an option is not supportedpublic java.lang.String ridgeTipText()
public double getRidge()
public void setRidge(double newRidge)
newRidge - Value to assign to Ridge.public java.lang.String eliminateColinearAttributesTipText()
public boolean getEliminateColinearAttributes()
public void setEliminateColinearAttributes(boolean newEliminateColinearAttributes)
newEliminateColinearAttributes - Value to assign to
          EliminateColinearAttributes.public int numParameters()
public java.lang.String attributeSelectionMethodTipText()
public SelectedTag getAttributeSelectionMethod()
public void setAttributeSelectionMethod(SelectedTag method)
method - the attribute selection method to use.public java.lang.String minimalTipText()
public boolean getMinimal()
public void setMinimal(boolean value)
value - if true memory will be conservedpublic java.lang.String outputAdditionalStatsTipText()
public boolean getOutputAdditionalStats()
public void setOutputAdditionalStats(boolean additional)
additional - true if additional stats are to be outputpublic java.lang.String useQRDecompositionTipText()
public boolean getUseQRDecomposition()
public void setUseQRDecomposition(boolean useQR)
useQR - true if QR decomposition is to be usedpublic void turnChecksOff()
public void turnChecksOn()
public java.lang.String getRevision()
getRevision in interface RevisionHandlergetRevision in class AbstractClassifier