Description: | | HotSpot learns a set of rules (displayed in a tree-like structure) that maximize/minimize a target variable/value of interest. With a nominal target, one might want to look for segments of the data where there is a high probability of a minority value occuring (given the constraint of a minimum support). For a numeric target, one might be interested in finding segments where this is higher on average than in the whole data set. For example, in a health insurance scenario, find which health insurance groups are at the highest risk (have the highest claim ratio), or, which groups have the highest average insurance payout. |